Latest news at LPNO

10 June 2020

Work of LPNO and colleagues on cover page of Photonics Journal
 

Hybrid integrated diode laser are introducing a new paradigm to photonics, via providing unprecedented coherence, full spectral control, and seamless embedding in high-functionality photonic circuits. Most promising is hybrid integration with ultra-low loss dielectric feedback circuits as these render the widest spectral coverage including the visible range. We present work on various types and operational modes of hybrid-integrated diode lasers based on low-loss dielectric feedback circuits using silicon nitride waveguides. Highlights are the demonstration of sub-100-Hz intrinsic linewidth, up to 120 nm wide spectral coverage around a 1.55 µm wavelength, and more than 100 mW output power. Functionalities include dual-wavelength generation, dual-gain operation, laser frequency comb generation, and wavelength tunable feedback circuits for hybrid lasers in the visible. Full article is available at Photonics, 7, 4 (2020)

 

22 January 2019

Integrated microwave photonics

Photonics and radio signals join forces for high-speed mobile data communication, like in 5G communications. At the same time, the applications of ‘integrated microwave photonics’ go way beyond telecom. This progress often comes from directions you would not expect in the first place. In a review paper in Nature Photonics), David Marpaung gives together with experts Jianping Yao of the University of Ottawa and Jose Campany of the University of Valencia a vision on the next phase of photonic chips, for example in brain-inspired, ‘neuromorphic’ optical computing. (see also UT Press release).

10 August 2017

VIDI Grant for David Marpaung

David Marpaung (Nanophotonics), currently at the University of Sydney (http://sydney.edu.au/science/people/david.marpaung.php), has received a prestigious grant of the Netherlands Science Organisation (NWO, VIDI). His research is to be hosted in the Laser Physics and Nonlinear Optics group (LPNO) and the Applied Nanophotonic research cluster of the UT (ANP). His activities are supported by various Dutch companies that are working in the field of integrated photonics, for instance Lionix International, Smart Photonics BV and Phoenix BV.
Dr. Marpaung will investigate new technologies for integrated photonic systems, for processing information through interactions between light and 'hypersound', to realize, e.g., on-chip Brillouin processors for future wireless and optical networks.

For more information, check NWO's press release.

NWO
22 July 2016

Light particles in a pin-ball machine

Dutch national quality newspaper "NRC" published a one-page article in the science section on our recent article in Phys. Rev. A on "Programmable two-photon quantum interference in 10^3 channels in opaque scattering media".